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The relationship between PNS and thin layer Navier-Stokes algorithms is used to develop 
traditional as well as new PNS procedures. The use of characteristics-based flux vector split- 
ting gives rise to a parabolized system that is based on the predominant physics of the flow, 
while pressure-gradient-based flux vector splitting is shown to give the traditional parabohzed 
scheme of Vigneron. Comparisons with TLNS results show the characteristics-based PNS 
system gives results that are at least as accurate as the more traditional pressure-gradient-split 
PNS system. The use of a safety factor in the pressure-gradient splitting is shown to cause 
inaccuracies and should be avoided. The interpretation of PNS procedures as the first sweep 
of a TLNS AD1 procedure also suggests an obvious global pressure iteration method that is 
mathematically well posed and, hence, leads to an efIicient rapidly converging global iteration 
procedure. i 1989 Academic Press. Inc 

I. INTROIXJCTION 

Parabolized Navier-Stokes procedures have proven to be very popular because 
of their accuracy and efficiency. For many flowfields they give results that are 
almost identical to those obtained with the full Navier-Stokes equations even 
though their CPU requirements are more than an order of magnitude smaller than 
those needed for the complete equations. Numerous attempts have been made to 
extend PNS schemes to problems in which the upstream propagation of informa- 
tion cannot be neglected entirely by means of various “global” iteration procedures. 
These efforts and perhaps the most effective global iteration techniques are 
summarized by Davis, Barnett, and Rakich [ 1 ] and Thompson and Anderson [2]. 

The major difference between PNS procedures and Navier-Stokes solvers is that 
PNS schemes are normally formulated in terms of the steady state equations while 
Navier-Stokes schemes are generally formulated in terms of the time-dependent 
equations. Because of this, it is difficult to “extend” a PNS algorithm to a 
Navier-Stokes algorithm. In the present paper, we take the opposite tack. We 
obtain PNS algorithms as a simplification of the time-dependent Navier-Stokes 
algorithms. One outcome of this is that we are able to define a family of PNS 
approximations including one that is based upon the physical characteristics of the 
equations. This result is obtained by starting from a generalized flux vector split 
formulation of the Navier-Stokes equations. Because the arguments center on the 
upstream propagation of “pressure” (inviscid) effects, with no loss of generality, we 
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start from the thin layer Navier-Stokes (TLNS) equations in which streamwise 
diffusion is ignored. 

II. SOLUTION OF TLNS EQUATIONS BY FLUX VECTOR SPLITTING 

The two-dimensional thin layer Navier-Stokes equations in generalized axisym- 
metric coordinates can be written as 

(1) 

where Q, E, and F have the standard definitions: 

The source term, H, contains both inviscid and viscous terms associated with 
axisymmetric geometry, 
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The viscous terms are defined by the vectors 

0, = (p, u, 0, e)‘, Q2 = (e/p, u2, v2, uv)’ 

and the matrices 

(4) 

(5) 
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(6) 

In this form, the viscous dissipation in the energy equation is separated from the 
remaining viscous terms so that formulations for which viscous dissipation can be 
neglected are easily obtained by setting R, to zero. A further advantage of this split- 
ting is that the matrices R, and R, contain only metric terms and properties of the 
gas (viscosity, thermal conductivity, and specific heats). For cases where p, k, and 
C, are constant, or nearly so, this division makes the linearization of the viscous 
terms particularly easy. For turbulent flows when these quantities vary rapidly, this 
form separates them from the dependent variables, making it possible to identify 
their effects on convergence more closely. 

Also, we note that here we deal with the axisymmetric form of the equations. The 
planar form can be obtained by setting the y’s inside the terms in Eqs. (2) and (6) 
to unity and dropping the source vector, H. Streamwise viscous derivatives are 
ignored in accordance with the TLNS approximation. 

We consider the solution of Eq. (1) by flux vector splitting (Steger and Warming 
[3] and Van Leer [4]). The purpose of flux vector splitting is to separate the flux 
vectors E and F into parts with definite (positive and negative) eigenvalues. In 
general, the Jacobian of the vector E has both positive and negative eigenvectors. 
Its splitting can be formally indicated as 

E=E++E-, (8) 

where the eigenvalues of the Jacobians of E + and E ~ are positive and negative, 
respectively. There are an infinite number of ways to accomplish this splitting and 
we shall consider two specific methods. To demonstrate the approach, we consider 
the homogeneous case where E= AQ with A = i?E/aQ. Flux-splitting of the 
homogeneous vector is reduced to splitting the matrix A as 

A=A++A-, (9) 

where the eigenvalues of A + are positive and those of A - are negative. Then, from 
the homogeneous character, we have 

E+ =A+Q and E- =A-Q 

which obviously satisfies Eq. (8). 
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The flux vector split algorithms can be completely described without defining a 
precise splitting procedure other than that indicated in Eq. (8). Splitting can be 
applied to either or both the 5 and q operators. Because central differences are 
generally used in the cross-stream directions for PNS procedures, we split only the 
vector E. Combining Eq. (8) with Eq. (1) and discretizing in time gives the finite 
difference expression 

where the residual R is given by 

. 

(10) 

(11) 

In Eq. (lo), the Jacobians D, B,, , and B,, are 

D = dH/aQ, B,, = aQ,m2, and B,, = aC!,m2. (12) 

These matrices are easily computed and are not given here. In keeping with the 
above comments, the matrices R, and R, are not linearized. The spatial discretiza- 
tion in Eq. (10) need not be defined precisely except to note that it is understood 
that the A + and A - terms must be upwind differenced and that all terms are 
treated consistently on both sides of the equals sign. 

Efficient solution of Eq. (10) requires some sort of operator splitting. Again, in 
keeping with our purpose, we split the LHS operator as 

-DAt+At $A’+AB-P 
aq aq 

R,~B,,+R,~Bu2 
al? aq 

I-DAt+A+-jAQ=-AtR. (13) 

Direct expansion of the LHS of Eq. (13) shows it is equal to the LHS of Eq. (10) 
except for terms of order At’. Experience with this splitting based upon upwind dif- 
ferencing in the streamwise direction and central differencing in the cross-stream 
direction has proven to be both eficient and accurate for TLNS solutions of 
viscous supersonic flow [S]. This type of splitting is based upon ideas suggested by 
the diagonally dominant (DDADI) splitting of Lombard [6], the Gauss-Seidel 
method of MacCormack [7], and the LU method of Yoon and Jameson [S]. 

581/80/2-7 
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We now consider two specific flux splittings for the vector E: 

(a) Splitting based on characteristics. The matrix A can be diagonalized by 
the similarity transform, 

A=M-‘AM, (14) 

where M is a matrix composed of the right eigenvectors of the matrix A. The 
diagonal matrix, A, contains the four entries, U, U, U+ C, where U is the 
contravariant velocity and C= (;“‘, + qf-)i” c, where c is the speed of sound. A 
straightforward splitting of Eq. (14) was suggested by Steger and Warming [3] as 

A+ = [A + /AJ]‘i2 

A -_ = [A - 1111-y, (15) 

where IAl refers to the matrix composed of the absolute values of the elements of 
A. From Eq. (15), we readily obtain 

A+ =M/i+M-’ A-=&fA-J.-’ (16) 

with A = A+ + A- and E+ = A’Q, EP = A-Q for the homogeneous case. 
(b) Splitting based on the pressure. An alternative method for splitting E is 

to split the pressure term into two parts as proposed by Vigneron [9], 

(17) 

(18) 

where M, is the streamwise Mach number, we find that the eigenvalues of aE ‘/aQ 
and aE-/aQ are 

A+ =diag(U, U, $([(y+ 1)-o(y- l)] Uf [(y- 1)2 (w- 1)2 U2+40K2]1’2}) 

A-=diag(O,O,O, -(y-l)(l-w)U). (19) 

Again, we have split the flux vector into positive and negative parts. The reader will 
note that the flux vector splitting in Eq. (17) is analogous to traditional PNS proce- 
dures. Again, this splitting is used on both the LHS and the RHS of Eq. (13). 

Solutions of the thin layer Navier-Stokes with either the flux splitting given in 
Eq. (16) or that given in Eq. (17) using the AD1 scheme given in Eq. (13) have 
proven to be efficient in terms of convergence. The converged solutions obtained 
with these two flux splittings are virtually identical. 
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III. OBTAINING THE PNS PROCEDURE FROM THE NAVIER-STOKES ALGORITHM 

The above discussion focused on the TLNS equations. We now note that if the 
matrix A- is identically zero (as it is in supersonic flow) the algorithm given in 
Eq. (13) describes an iterative marching procedure in one direction. For those cases 
where A - is not zero, we can likewise obtain a “marching” procedure by ignoring 
the contribution of A-. As we shall show, the traditional PNS procedures are 
obtained by omitting this aA-/a< operator. Again, we note we must maintain 
consistent operators on both sides of the equation, so we also drop aE -/a( on the 
RHS. With this approximation, Eq. (13) becomes the parabolic operator 

[ 

a a 
I-DAt+At zA++GB 

AQ= -AtR’, 

where the modifed residual, R’, is given by 

(20) 

We again consider the two flux splittings described above. 

(a) Pressure Gradient Splitting 

In the special case where E + is given by Eq. ( 17), Eq. (20) becomes the tradi- 
tional PNS operator as given by numerous authors (see, for example, Refs. [9-131) 
except that the time derivative is included. (The source term also may be treated 
slightly differently but in philosophy the two are precisely the same.) Because the 
“parabolized” Eq. (20) is now a marching equation, it is clearly better to iterate to 
convergence in time at each line before advancing to the next streamwise station. 
Thus, the value of AQ on the LHS of Eq. (20) is driven to zero by time marching 
at one station, and then the procedure “marches” to the next t-station and so forth. 
As will be shown later, this iteration can typically be driven to machine accuracy 
in less than 10 iterations. These results do differ somewhat from the traditional 
non-iterative PNS procedures, as discussed later. 

(b) Characteristics Splitting 

A similar time-dependent PNS procedure can also be obtained from the charac- 
teristics-split system given in Eq. (16). If the matrix A- is neglected, this also 
becomes a marching algorithm. The previous example was likened to traditional 
PNS algorithms. This PNS-like procedure is more readily described by an appeal 
to the physics of the flow. If we consider a subsonic flow, dropping the matrix A- 
corresponds to omitting the upstream-propagating acoustic wave. Our calculations 
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show this PNS procedure gives results that are almost identical to those based on 
the pressure gradient splitting that is traditionally used. 

(c) Dropping the Time Derivative 

The examples of PNS algorithms given above include the temporal derivative. 
Consequently, they require an iterative procedure at each station rather than a 
simple marching procedure as is normally used. To obtain this marching procedure, 
we first re-write Eq. (20) without using the delta form. By cancelling terms on the 
LHS with those on the RHS (given in Eq. (21)), the time-dependent algorithm 
becomes 

-Ata R %,,+R %,, 
n+l 

all I all 2 aa 
= Qn, (22) 

Then, by allowing At to go to infinity and rearranging terms slightly, we obtain the 
general form of the PNS procedure, 

$E’=A+$= -g+H+$ R,~Bu,+R2$& Q. (23) 

This clearly allows marching in r. It also shows that a variety of PNS algorithms 
can be obtained by flux vector splitting the vector E. Each splitting provides a 
different algorithm. In particular, the pressure gradient splitting noted above gives 
the widely used PNS algorithms referenced earlier. Equation (23) also shows that 
the characteristic flux vector splitting suggested by Steger and Warming [3] 
likewise gives an alternative (and more physically realistic) PNS algorithm. 

The logical question to ask at this point is which of the infinitely many flux 
vector splittings will provide the most accurate parabolized equations if the upwind 
propagating operator is ignored. We know of no theoretical way to answer this 
quandary, but our results shown later indicate that the PNS algorithm obtained 
from the Steger-Warming flux splitting gives results which are essentially identical 
to the traditional PNS algorithm. The accuracy of both operators is verified by 
comparison with solutions of the complete TLNS equations. 

(d) A Comparison of Time-Iterative and Space-Marching Algorithms 

The most obvious difference between time-iterative and space-marching PNS 
algorithms is that the latter does not require iterations at each <-station while the 
former does. There are, however, some additional differences that should be noted. 
First, we compare the final converged solution from the time-iterative procedure 
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with that from the space-marching. From Eqs. (20) and (21), the converged 
solution for the time-iterative equation after AQ has been driven to zero is 

aA+Q+&-,, =o 
2 a? . (24) 

where V.T. represents the viscous terms. The space-marching procedure obtained 
from Eq. (23) yields 

A+ %+t?f-VT =O 
ay all . ' . (25) 

The q-derivatives are identical in both schemes and so the viscous terms are not 
explicitly stated. 

The difference between the two formulations appears in the <-derivative. The 
iterative approach allows the conservative form of the equations to be used, while 
the space-marching form is non-conservative. Using the subscript i for the 
<-direction and for simplicity considering only first-order accurate differencing, the 
iterative procedure results in 

(AT Qi-Ai+_ I Qi- 1)/A5, 

while the space-marching procedure gives 

(26) 

(27) 

By performing back-to-back comparisons of the iterative and the space-marching 
procedures, we have found that the space-marching procedure (based on pressure 
splitting) tends to become unstable when unequal step sizes in t are used. In cases 
where stability can be maintained, the non-conservative form in a variable <-grid 
leads to global mass errors of order one. The iterative procedure works well for 
equally spaced or highly stretched grids in t. Consequently, part and sometimes all 
of the CPU penalty incurred by iterating can be offset by using variable (and, 
hence, larger) steps in <. A method for counteracting the global mass flux errors 
was suggested by Schiff and Steger [ 111 but does not appear to be widely used. 
Our calculations indicate that their method is useful but the 75 axial grid lines had 
to be increased to 300 to enable the modified space-marching procedure to match 
the conservative time-iterative method in accuracy. Space-marching calculations 
without the Schiff-Steger modification led to global mass flux errors of more than 
50% in this high-expansion nozzle even in the absence of shocks. The advantage of 
using iterative procedures in space-marching schemes has also been pointed out by 
Newsome, Walters, and Thomas [14] in an interesting recent article. Although 
their work is philosophically similar to ours, it differs in detail. Their iteration is 
based upon Gauss-Seidel procedures rather than the forward-backward time 
marching used here. They also restrict space-marching procedures to Vigneron 
splitting based on Van Leer’s flux vector splitting. 
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A second difference between the space-marching and time-iterative PNS proce- 
dures is the requirement for a safety factor, g, in defining the parabolized operator. 
PNS solutions reported in the literature traditionally replace Eq. (18) by 

where Q is generally chosen as 0.85 or lower. In our tests of a space-marching 
algorithm, we were able to obtain stable smooth solutions only when c was 0.85 or 
smaller, a value generally recommended for space-marching procedures [ 151. By 
contrast, the time-iterative procedure remained completely stable when r~ was set 
equal to one. (The iterative method of Ref. [14] also allows an increase in the 
value, cr. Their results are based on c = 0.95.) Comparisons with TLNS solutions 
(presented later) show the CJ = 1.0 solution is substantially more accurate than the 
c = 0.85 result, regardless of whether the 0.85 result was obtained by space- 
marching or iterative procedures. Again, this difference would favor the use of the 
time-marching PNS procedure. 

IV. STABILITY ANALYSIS OF THE TIME-ITERATIVE PNS ALGORITHM 

To validate the time-iterative algorithm discussed above, the linear stability 
analysis of Eq. (20) is given as follows. The amplification matrix of the variable, Q, 
is defined by 

Q n+l&Qn. (29) 

From a Von Neumann analysis, G can be found to be 

K,G= K,, (30) 

where the matrices K, and K2 are 

K,=I-AtD+AtA++iAtBsinq, 

-2At(R1Bu1+R2Bu2) (cosw - 1) 
Ar12 ” 

K,=I. 

(31) 

and wY is the y-direction wavenumber. Figure 1 shows the maximum eigenvalues of 
the G matrix vs. wavenumber for typical supersonic and subsonic conditions. The 
results show Eq. (20) is unconditionally stable, and that rapid convergence can be 
expected for high values of CFL. 
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FIG. 1. Maximum eigenvalues of amplification matrix for viscous supersonic flow as a function of 
CFL; Re = 1.0 x 105. 

V. COMPUTATIONAL RESULTS AND DISCUSSION 

To test the numerical algorithms described above, the viscous supersonic flow in 
the diverging section of a high expansion ratio nozzle with an area ratio of 270: 1 
was computed with the TLNS and the PNS equations. The geometry is shown on 
Fig. 2 with a 75 x 50 grid. Calculations were made for a range of Reynolds numbers 
including both laminar and turbulent conditions, but the results shown here are 
limited to a throat Reynolds number of 105. The gas was treated as perfect with a 
ratio of specific heats of 1.4. For the inlet line a constant Mach number flow 
(M= 1.02) with zero contravariant velocity was chosen. 

The numerical efficiency of the time-iterative PNS procedure is presented on 
Fig. 3 for representative conditions. This figure shows the rate of convergence of the 
time-iterative procedure at a particular t-station. Convergence rates are plotted for 
all four equations for both inviscid and viscous calculations. As these results show, 
convergence reached machine accuracy in less than 10 iterations, and is slightly 
faster for the inviscid than for the viscous equations. Acceptable convergence (three 
to four orders of magnitude reduction in the L, norm) was reached in four 
iterations. In general, this convergence characteristic was experienced in all our 
PNS calculations. The results plotted here are for the pressure gradient split PNS 
procedure, but are also representative of the characteristics-split system. 
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FIG. 2. Geometry and 75 (axial) x 50 (radial) grid for nozzle flow calculations, nozzle expansion 
ratio: 270: 1. 

The results of the PNS algorithm are compared with the thin layer 
Navier-Stokes solutions in Fig. 4. The top curve shows the Mach number contours 
in the nozzle as computed by the PNS procedure while the bottom curve shows 
similar results for the TLNS equations. As can be seen, the results are almost 
identical. Although not shown here, the PNS procedure based on characteristic 
splitting gives results that are even more similar to the TLNS results than the 
pressure-gradient splitting. 

I J 

10-18 I I I I / \ 1 I I 
0 2 4 6 8 10 

Number of Iterations 

FIG. 3. Convergence rate of time-iterative PNS procedure at typical axial location. 
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FIG. 4. Mach number contours in nozzle as computed by PNS algorithm based on pressure gradient 
splitting (top) and thin-layer Navier-Stokes algorithm (bottom). 

A more sensitive comparison between the two PNS procedures and the TLNS 
procedure is given on Figs. 5 and 6. These figures show the cross-stream profiles of 
the pressure and velocity at the exit plane. The pressure profiles on Fig. 5 show that 
the two PNS procedures are in excellent agreement with the Navier-Stokes results, 
although the pressure-gradient-split system shows a modest overshoot near the cen- 
terline. Also shown on this figure are the results for the pressure-gradient-split 
system with a safety factor 0 = 0.85 included. Setting this factor less than one 
deteriorates the accuracy of the solution. 

The use of the safety factor causes the pressure to exceed the Navier-Stokes 
results by about 5% near the wall and to undershoot by about 25% at the cen- 
terline. The effect of setting (T = 0.85 also causes a noticeable change in the global 
flowfield structure as can be seen by comparing the Mach number contours for the 
u = 0.85 calculation (Fig. 7) with those for the 0 = 1.0 and the TLNS calculations 
(Fig. 4). These differences are, of course, amplified by the strong expansion that 
takes place in the flowfield. These and other results show the B = 1.0 calculations 
are to be preferred over those with c < 1.0. In addition, they demonstrate that the 
characteristics-split system is at least competitive with the pressure-gradient-split 
system (with G = 1.0) in terms of accuracy. 

The corresponding results for velocity are almost identical for all variations 
considered as can be seen on Fig. 6. Correct values of velocity in conjunction with 
incorrect values of static pressure are an indication that entropy (stagnation 
pressure) is not being properly conserved, a phenomenon that is frequently encoun- 
tered in numerical schemes. 
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FIG. 5. Comparison of cross-stream pressure profile at exit plane for various PNS results with TLNS 
calculations. 
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FIG. 6. Comparison of cross-stream velocity protile at exit plane for various PNS calculations with 
TLNS results. 
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FIG. 7. Mach number contours in 270: 1 expansion ratio nozzle for PNS solution-based on pressure 
gradient splitting and using a safety factor, c = 0.85; Re = 1.0 x 105. 

Further comparisons between the TLNS results and the three PNS calculations 
are given in Figs. 8 and 9. Figure 8 shows the pressure distribution on the wall. The 
three orders of magnitude variation in the wall pressure distribution is too strong 
to show the relatively minute differences between the PNS solutions, but they do 
show that the PNS results are globally accurate throughout the expansion process. 
The thickness of the subsonic layer (distance from the wall to the sonic line) is 
shown in Fig. 9. This figure shows the three PNS results (characteristics-split, 
pressure-gradient-split with CJ = 1.0, and pressure-gradient-split with (T = 0.85) give 
almost identical locations for the sonic line. As the exit plane is approached, all 
PNS procedures underpredict the thickness of the subsonic layer by about 1%. 

- TLNS 
0 Pressure Gradient 

Splitting 0=1.0 
A Characteristic 

Splitting 
0 Pressure Gradient 

Splitting 0=0.55 

Axial Distance, x/xexit 

FIG. 8. Pressure distribution on the wall for TLNS and PNS procedures. 
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FIG. 9. Width of subsonic layer as a function of axial distance along the wall showing results of 
TLNS and various PNS calculations. 

(Note the location of the sonic line was ascertained by linear interpolation.) This 
relatively accurate location of the sonic line gives further evidence of the relative 
and absolute accuracies of these PNS procedures. 

VI. GLOBAL PNS PROCEDURE 

For flows with strong viscous-inviscid interaction, the marching type PNS proce- 
dure as discussed in Section III can lead to serious errors in the numerical solution 
due to the suppression of the streamwise ellipticity. To allow the upstream propaga- 
tion of acoustic waves inside the subsonic layer, thus preserving the streamwise 
elliptic behavior, the aE -/at term in Eq. (10) cannot be ignored. Numerous 
attempts have been made to take into account the effect of aE-/a< by using a 
global pressure iteration. The basic idea is to update the pressure field by providing 
a stable differencing scheme for retaining the aE-/a< derivative in the steady state 
equation. This is usually done by evaluating dE -/at from a forward difference and 
using the updated value of E - at downstream locations, as given in the works of 
Rakich [lo], and Lin and Rubin [ 161. Davis et al. [ 11, and Barnett and Davis 
[ 171 also developed a global pressure iteration by appending a fictitious unsteady 
term, aP/ar on the steady state equation, then updating the pressure field by a 
two-step alternating direction explicit procedure. These global pressure iterations 
are summarized by Thompson and Anderson 121. 

In the present study, the marching type PNS procedure is derived from the 
unsteady TLNS equations. This suggests that the corresponding global pressure 
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iteration procedure is recovered by returning to the complete TLNS equations 
(Eq. (13)). A straightforward forward-backward iteration can be used for this 
purpose. Our experience is that the most effective initial condition for the fully 
elliptic solution is obtained by starting from a converged PNS solution. Thus, we 
suggest: 

(a) Obtain an initial PNS solution by marching from upstream to 
downstream using Eq. (20). 

(b) Solve Eq. (13) by the two-step ADI, i.e., 

[ 

a a 
Z-AtD+At zA++gB 

-A 
all 

R aB,,+R tBv2 
I atl 2 all 111 AQ* = -AtR 

I-AtD+A+ AQ=(Z-AtD)AQ*. 1 

(32) 

(c) Update the flow variable, Q, according to, 

Q “+‘=Q,+AQ (34) 

until the converged steady state is reached. 

In supersonic regions, A - is identically zero and the LHS operator in Eq. (33) 
becomes the identity matrix; hence, only Eq. (32) needs to be solved. In subsonic 
regions, Eq. (33) provides a mechanism to allow upstream propagation from 
downstream boundaries. This global iteration algorithm can be easily implemented 
in existing time-iterative PNS codes. 

Figure 10 shows the convergence rate of this global iteration procedure applied 
to the same high-expansion nozzle calculation given in Section III. It requires only 
110 iterations to reach machine accuracy; acceptable convergence is achieved in 
about 25 iterations. The convergence rate of the global iteration will, of course, 
depend on the degree of “ellipticity” in the problem, but because it is based upon 
more general concepts than the global procedures cited above, we anticipate the 
present procedure will be comparable to or more efficient than those for “nearly” 
hyperbolic problems. Further, it provides a direct procedure for going to fully ellip- 
tic problems. The convergence presented on Fig. 10 is for the characteristics-split 
system. Thin layer Navier-Stokes solutions based on pressure-gradient-splitting 
using this same procedure converge at essentially the same rate. 
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Time Step Number 

FIG. 10. Convergence of global pressure iteration for the TLNS equations for 270: 1 expansion ratio 
nozzle. 

VII. SUMMARY AND CONCLUSIONS 

Traditional flux split algorithms for the thin layer Navier-Stokes equations are 
shown to contain the parabolized Navier-Stokes equations as a subset. If the TLNS 
algorithm is approximately factored into a forward sweep and a backward sweep, 
the forward sweep can be shown to be identical to traditional PNS formulations. 
Thus, by omitting the backward sweep, the TLNS formulation becomes a PNS 
formulation. This inter-relationship implies a rational manner for developing a 
“global” iteration procedure for the PNS equations. 

The interpretation of one factor of flux vector split TLNS algorithms as a PNS 
algorithm suggests that a distinct PNS formulation can be obtained for each type 
of flux vector splitting considered. Two examples show this is true. The traditionally 
used PNS formulation is obtained by using a pressure gradient splitting to accom- 
plish the flux vector splitting. The use of a characteristics-based flux splitting yields 
a PNS algorithm that includes only the downrunning characteristics while omitting 
the upstream propagating waves. Stability results show this characteristics-based 
PNS formulation is stable for space-marching and numerical results show that it 
provides results that are identical to the classical pressure gradient split PNS 
formulation and in excellent agreement with TLNS solutions. 

The use of a time-based PNS formulation by necessity requires an iteration at 
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each t-plane. In comparison to non-iterative space-marching procedures, this 
represents a disadvantage, however, it is partially offset in that the iteration allows 
the <-derivative to be formulated in a conservative form so that variable step sizes 
in 5 can be readily accomodated. The iteration also obviates the need for using a 
safety factor when the pressure gradient splitting is used. Comparison of pressure 
gradient split PNS calculations with TLNS solutions showed that solutions using 
the safety factor were inferior to those without it. Although this result is not surpris- 
ing, many space-marching codes require the use of a safety factor for stability. 

Finally, the interpretation of PNS algorithms as a subset of TLNS algorithms 
offers a robust, stable, and efficient way to accomplish the global iteration for 
pressure. Computations of the TLNS system are shown to converge in some 25 
iterations with each iteration requiring an amount of work commensurate with a 
traditional ADI sweep. 
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